Formation of the notochord in living ascidian embryos.
نویسندگان
چکیده
The dynamic behaviour of cells during formation of the notochord in the ascidian, Ciona intestinalis, was examined by means of Differential Interference Contrast (DIC) microscopy and time-lapse videorecording. The initial rudiment is formed in part as a consequence of the pattern of mitotic divisions as the blastopore shifts posteriorly. Vertical and horizontal rearrangements produce an elongate rod of disc-shaped cells stacked end to end. Further elongation is accompanied by a cell shape change. Some cell growth or swelling is indicated to occur later in development, but this growth appears to contribute mostly to an increase in the diameter, and only insignificantly to the length of the notochord. Intracellular vacuoles that appear around 13 h after fertilization increase in size and fuse at about 16 h form intercellular ones. These in turn merge to form the central matrix core of the notochord at around 18 to 20 h. As the notochord elongates and cells change in shape, the basal surfaces bleb actively. This surface activity may be related to formation of the perinotochordal sheath.
منابع مشابه
Ras is an essential component for notochord formation during ascidian embryogenesis
In ascidian embryos, inductive interactions are necessary for the fate specification of notochord cells. Previous studies have shown that notochord induction occurs at the 32-cell stage and that basic fibroblast growth factor (bFGF) has notochord-inducing activity in ascidian embryos. In vertebrate, it is known that bFGF receptors have tyrosine kinase domain and the signaling pathway is mediate...
متن کاملSynergistic action of HNF-3 and Brachyury in the notochord differentiation of ascidian embryos.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to add...
متن کاملThe expression of nonchordate deuterostome Brachyury genes in the ascidian Ciona embryo can promote the differentiation of extra notochord cells
The notochord is a structure present in all chordates and its development requires the transcription of Brachyury. While previous studies have shown that Brachyury is essential for notochord formation in vertebrate embryos, this gene is also expressed during the embryogenesis of nonchordate deuterostomes, hemichordates and echinoderms. Here we report that nonchordate deuterostome Brachyury gene...
متن کاملTail morphogenesis in the ascidian, Ciona intestinalis, requires cooperation between notochord and muscle.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in not...
متن کاملMutations affecting tail and notochord development in the ascidian Ciona savignyi.
Ascidians are among the most distant chordate relatives of the vertebrates. However, ascidians share many features with vertebrates including a notochord and hollow dorsal nerve cord. A screen for N-ethyl-N-nitrosourea (ENU)-induced mutations affecting early development in the ascidian Ciona savignyi resulted in the isolation of a number of mutants including the complementing notochord mutants ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 86 شماره
صفحات -
تاریخ انتشار 1985